Lecture 36

Introduction to Theory of Computation, Languages, DFA

Introduction

We will learn about various abstract computational machines: Deterministic Finite Automata, Context Free Grammars, and Turing Machines.

Why study these machines?

- DFAs are used in software for designing and checking the behaviour of digital circuits, In scanning large bodies of texts, verifying the correctness of programs.
- CFGs play a central role in Compilers.
- Turing machines are used to prove impossibility results.

Search vs Decision Problems

Search Problem: Problems where you have to find a solution or inform that no solution exists.
Example: SEARCH_PATH: Given a graph G and vertices u and v, find a path from u to v or determine if no such paths exist.

Decision Problem: Problems that can be posed as a Yes or No question.
Example: DECISION_PATH: Given a graph G and vertices u and v, find whether there is a path from u to v.

We will focus on decision problems as search problem can be posed as a collection of decision problem.

Example: SEARCH_PATH can be answered by answering the following decision problems: Is P_{1} a path from u to v ? Is P_{2} a path from u to v ? Is P_{3} a path from u to v ? Is P_{4} a path from u to v ? Is P_{5} a path from u to v ? ...

Formalising Problems

Definition: An alphabet is a finite, nonempty set of symbols, usually denoted by Σ.

$$
\Sigma=\{0,1\}, \Sigma=\{a, b, c, \ldots, z\}
$$

Definition: A string is a finite sequence of symbols chosen from some alphabet.
0010101 is a string chosen from $\Sigma=\{0,1\}$
$a b x d d$ is a string chosen from $\Sigma=\{a, b, c, \ldots, z\}$
ϵ denotes the empty string from any alphabet
Length of a string w, denoted by $|w|$, is the number of positions in w.
For instance, $|0010101|=7,|a b x d d|=5,|\epsilon|=0$
Σ^{k} denotes the set of all the strings of length k made from symbols of Σ.
$\Sigma^{*}=\Sigma^{0} \cup \Sigma^{1} \cup \Sigma^{2} \cup \ldots$

Formalising Problems

Definition: A set of strings all of which are chosen from some Σ^{*}, where Σ is a particular alphabet, is called a language.

Examples: Some languages over $\Sigma=\{0,1\}$

$$
\begin{aligned}
L & =\{0,1,11,101,1101\} \\
L & =\{\epsilon, 01,10,1001,1010,1100,0011, \ldots\} \\
L & =\{\epsilon, 10,11,101,111,1011, \ldots\}
\end{aligned}
$$

Definition: A problem is the question of deciding whether a given string is a member of some particular language.

Deterministic Finite Automaton

Definition: A DFA is a 5-tuple $\left\langle Q, \Sigma, \delta, q_{0}, F\right\rangle$

- A finite set of states, denoted by Q.
- A finite set of input symbols, denoted by Σ.
- A transition function, $\delta: Q \times \Sigma \rightarrow Q$
- A start state q_{0}, one of the states in Q.
- A set of final states F, such that $F \subseteq S$.

Transition diagram of a DFA
Example: $\Sigma=\{0,1\}$

How DFA Processes Strings?

A DFA processes an input string in the following manner:

- It reads the input string one by one from left to right.
- It starts with the "start state" and moves from one state to another using δ.
- It "accepts" a string if after reading all the symbols it ends at a final state, else it "rejects".

Definition: Language of a DFA M, denoted $L(M)$, is the set of strings that are accepted by it.

Language of the above DFA is the set of binary strings that contain 101 as a substring.

