Lecture 36

Introduction to Theory of Computation, Languages, DFA

Introduction

We will learn about various abstract computational machines: Deterministic Finite Automata, Context Free Grammars, and Turing Machines.

Why study these machines?

- In scanning large bodies of texts, verifying the correctness of programs.
- CFGs play a central role in Compilers.
- Turing machines are used to prove impossibility results.

DFAs are used in software for designing and checking the behaviour of digital circuits,

Search vs Decision Problems

Search Problem: Problems where you have to find a solution or inform that no solution exists. **Example:** SEARCH_PATH: Given a graph G and vertices u and v, find a path from u to v or determine if no such paths exist.

Decision Problem: Problems that can be posed as a Yes or No question.

path from *u* to *v*.

decision problem.

Is P_4 a path from u to v? Is P_5 a path from u to v? ...

- **Example:** DECISION_PATH: Given a graph G and vertices u and v, find whether there is a
- We will focus on decision problems as search problem can be posed as a collection of
- **Example:** SEARCH_PATH can be answered by answering the following decision problems: Is P_1 a path from u to v? Is P_2 a path from u to v? Is P_3 a path from u to v?

Formalising Problems

Definition: An alphabet is a finite, nonempty set of symbols, usually denoted by Σ . $\Sigma = \{0,1\}, \Sigma = \{a, b, c, ..., z\}$

Definition: A string is a finite sequence of symbols chosen from some alphabet.

0010101 is a string chosen from $\Sigma = \{0,1\}$

abxdd is a string chosen from $\Sigma = \{a, b, c, ..., z\}$

 ϵ denotes the empty string from any alphabet

For instance, |0010101| = 7, |abxdd| = 5, $|\epsilon| = 0$

 $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \dots$

- **Length** of a string w, denoted by |w|, is the number of positions in w.
- Σ^k denotes the set of all the strings of length k made from symbols of Σ .

Formalising Problems

alphabet, is called a language.

Examples: Some languages over $\Sigma = \{0,1\}$ $L = \{0, 1, 11, 101, 1101\}$ $L = \{\epsilon, 01, 10, 1001, 1010, 1100, 0011, \ldots\}$ $L = \{\epsilon, 10, 11, 101, 111, 1011, \dots\}$

some particular language.

Definition: A set of strings all of which are chosen from some Σ^* , where Σ is a particular

- **Definition:** A **problem** is the question of deciding whether a given string is a member of

Deterministic Finite Automaton

Definition: A **DFA** is a 5-tuple $\langle Q, \Sigma, \delta, q_0, F \rangle$

- A finite set of states, denoted by Q.
- A finite set of input symbols, denoted by Σ .
- A transition function, $\delta: Q \times \Sigma \to Q$
- A start state q_0 , one of the states in Q.
- A set of final states F, such that $F \subseteq S$.

How DFA Processes Strings?

A DFA processes an input string in the following manner:

- It reads the input string one by one from left to right.
- It starts with the "start state" and moves from one state to another using δ .
- It "accepts" a string if after reading all the symbols it ends at a final state, else it "rejects".

Definition: Language of a DFA M, denoted L(M), is the set of strings that are accepted by it.

Language of the above DFA is the set of binary strings that contain 101 as a substring.

